

MARIN

G SINTE

7182818284

DeepWind-An Innovative Offshore Wind Turbine Concept Concept EWEA 2013 Vienna February 4-7 2013 Innovative Concepts and new Technologies

Uwe Schmidt Paulsen* uwpa@dtu.dk

 $f(x+\Delta x)=$

EU FP7+ DeepWind Consortium www.deepwind.eu

*DTU Wind Energy Frederiksborgvej 399 Dk-4000 Roskilde Denmark

DTU Wind Energy Department of Wind Energy

DeepWind Contents

- DeepWind Concept
- DeepWind instruments and goals
- Results in the project
- Conclusion

2 DTU Wind Energy, Technical University of Denmark

DeepWind Concept From shore to deep sea

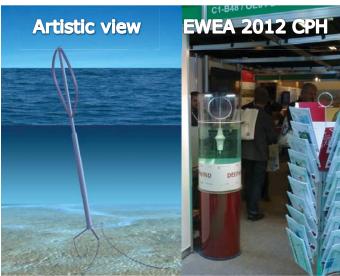
3 DTU Wind Energy, Technical University of Denmark

DeepWind

Contents

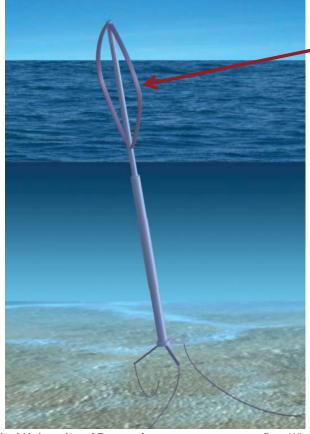
- DeepWind Concept
- DeepWind instruments and goals
- Results in the project
- Conclusion

4 DTU Wind Energy, Technical University of Denmark


DeepWind

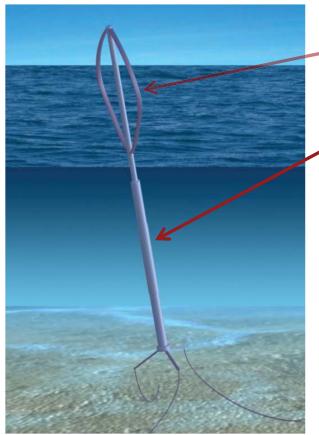
DeepWind Concept

- Genuine offshore concept
 - Simple
 - Scalable
 - For deep sea sites
- Floating offshore based on VAWT technology
- Cost difference allows room for design space
- A priori: Tech Range 100-1000 m depth
- So far
 - demonstrator
 - exhibition model
 - paper work results
- Contributions to reduce risk(selected list):



- Vita L, Zhale F, Paulsen US Pedersen TF, Madsen HA, Rasmussen F. Novel Concept For Floating Offshore Wind Turbines: Concept Description And Investigation Of Lift, Drag And Friction Acting On The Rotating Foundation in Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, June 6 Shanghai 2010 OMAE2010-20357
- Uita L Offshore floating vertical axis wind turbines with rotating platform Risø DTU, Roskilde, Denmark, PhD dissertation PhD 80, 2011
- Stefan Carstensen1 Xerxes Mandviwalla, Luca Vita and Uwe Schmidt Paulsen Lift of a Rotating Circular Cylinder in Unsteady Flows ISOPE June2012
 5 DTU Wind Energy, Technical University of Denmark
 DeepWind-an Innovative Floating Offshore Wind Turbine concept

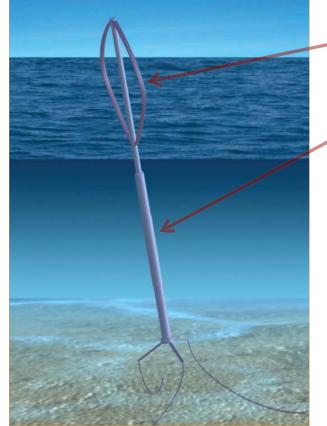
 No pitch, no yaw system


 Light weight rotor with pultruded blades

6 DTU Wind Energy, Technical University of Denmark

No pitch, no yaw system

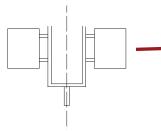
 Floating and rotating tube as a spar buoy


 Light weight rotor with pultruded blades

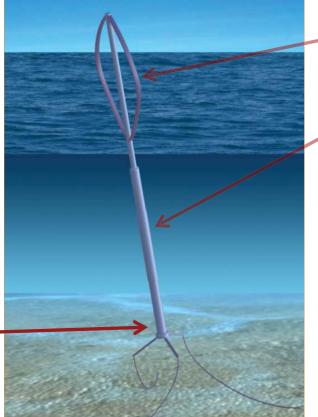
• Long slender and rotating underwater tube with little friction

7 DTU Wind Energy, Technical University of Denmark

- No pitch, no yaw system
- Floating and rotating tube as a spar buoy
- C.O.G. very low counter weight at bottom of tube


- Light weight rotor with pultruded blades
- Long slender and rotating underwater tube with little friction with little friction

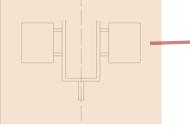
8 DTU Wind Energy, Technical University of Denmark

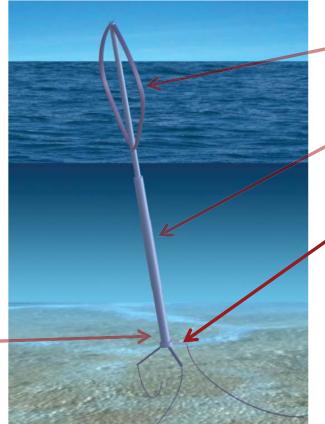


- No pitch, no yaw system
- Floating and rotating tube as a spar buoy
- C.O.G. very low counter weight at bottom of tube
- Safety system

9

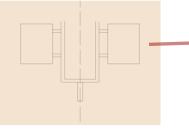
DTU Wind Energy, Technical University of Denmark

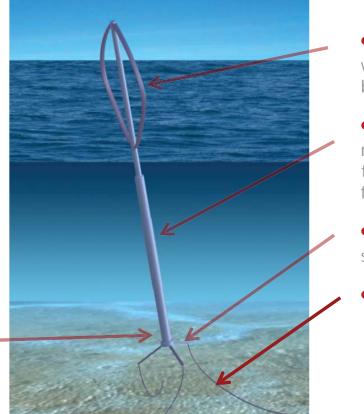



- Light weight rotor with pultruded blades
- Long slender and rotating underwater tube with little friction with little friction

DeepWind-an Innovative Floating Offshore Wind Turbine concept

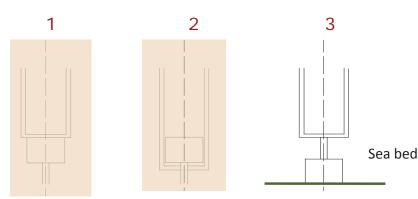
- No pitch, no yaw system
- Floating and rotating tube as a spar buoy
- C.O.G. very low counter weight at bottom of tube
- Safety system

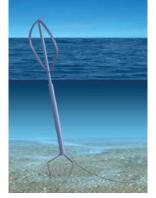

• Light weight rotor with pultruded blades


- Long slender and rotating underwater tube with little friction
- Torque absorption system

10 DTU Wind Energy, Technical University of Denmark

- No pitch, no yaw system
- Floating and rotating tube as a spar buoy
- C.O.G. very low counter weight at bottom of tube
- Safety system

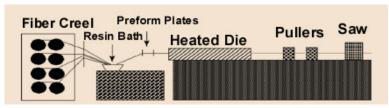

- Light weight rotor with pultruded blades
- Long slender and rotating underwater tube with little friction
- Torque absorption system
- Mooring system

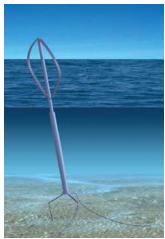

11 DTU Wind Energy, Technical University of Denmark

DeepWind The Concept- Generator configurations

- The Generator is at the bottom end of the tube; several configuration are possible to convert the energy
- Three selected to be investigated first:
 - 1. Generator fixed on the torque arms, shaft rotating with the tower
 - 2. Generator inside the structure and rotating with the tower. Shaft fixed to the torque arms
 - 3. Generator fixed on the sea bed and tower. The tower is fixed on the bottom (not floating).

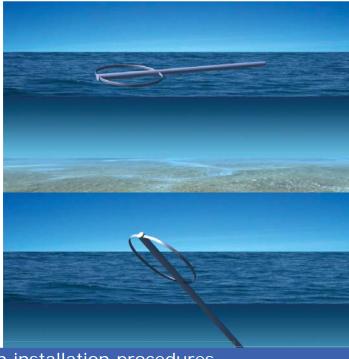
12 DTU Wind Energy, Technical University of Denmark


DeepWind-an Innovative Floating Offshore Wind Turbine concept


DeepWind

The Concept- Blades technology

- The blade geometry is constant along the blade length
- The blades can be produces in GRP or similar
- Pultrusion technology:
 - Presently block up to approx 1 m units
 - outlook- 11 m chord several 100 m long blade length


- Pultrusion technology could be performed on a ship at site
- Blades can be produced in modules
- 13 DTU Wind Energy, Technical University of Denmark

DeepWind The Concept- Installation, Operation & Maintenance

- INSTALLATION
 - Using a two bladed rotor, the turbine and the rotor can be towed to the site by a ship. The structure, without counterweight, can float horizontally in the water. Ballast can be gradually added to tilt up the turbine.
- O&M
 - Moving the counterweight in the bottom of the foundation is possible to tilt up the submerged part for service.
 - It is possible to place a lift inside the tubular structure.

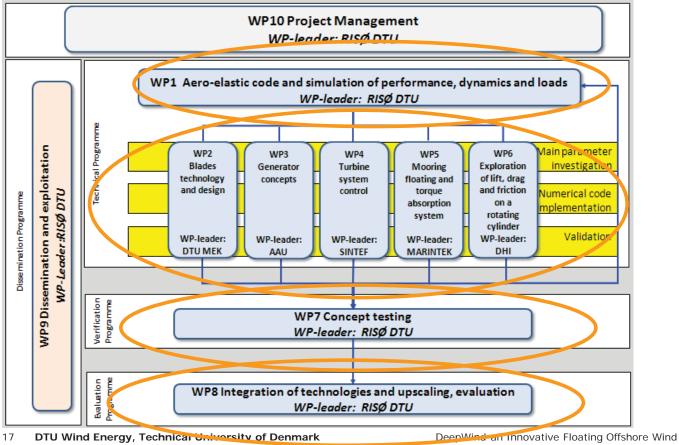
A new basis for cost cutoff in installation proceduresRedistributing the costs

14 DTU Wind Energy, Technical University of Denmark

DeepWind The Concept Upscaling

- · Pultrusion technology allows for very long and fail-free manufactured blades
- Concept simplicity
- Few components with less down time failures
- Cost-effective different materials for large structure
- Specific requirements to maintain the underwater components

DTU Wind Energy, Technical University of Denmark 15


DeepWind Contents

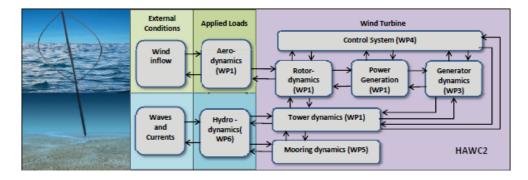
- DeepWind Concept
- DeepWind instruments and goals
- Results in the project
- Conclusion

16 DTU Wind Energy, Technical University of Denmark

DTU

DeepWind Instruments and goals

Turbine concept


DeepWind Contents

- DeepWind Concept
- DeepWind instruments and goals
- Results in the project
- Conclusion

18 DTU Wind Energy, Technical University of Denmark

DeepWind Results 1st Design Assumptions

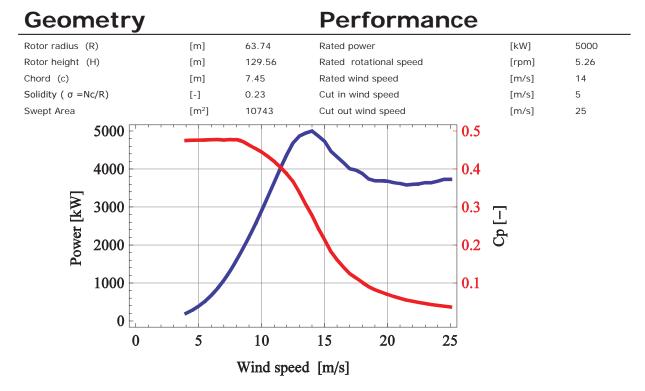
Dynamic stall neglected
Atmospheric turbulence not considered
Evaluation of loads with 3 DOF
No mooring

19 DTU Wind Energy, Technical University of Denmark

DeepWind Results 2MW VAWT vs HAWT

	Deep Wind	HyWind*	
Power	2 MW	2.3 MW (+15%)	of the local division of
Rotor Diameter	67 m	82.4 m (+23%)	*
Rotor Height	75 m	65.0 m (-13%)	
Chord (blades number)	3.2 m (2)	N/A (3)	
Rotational speed at rated conditions	15.0 rpm	16 .0 rpm (+7%)	
Radius of the rotor tower	2.0 m	3.0 m (+50%)	
Maximum radius of the submerged part	3.5 m	4.15 m (+19%)	
Total tower length (underwater part)	183 m (93m)	165 (100)	
Displacement	3000 tons	5300 tons (+77%)	

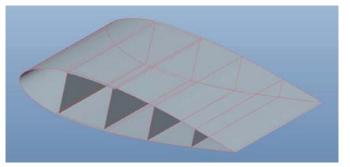
*"HYWIND, Concept, challenges and opportunities ", Statoil

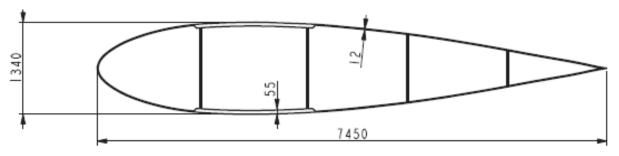

Uwe Schmidt Paulsen Prospects of Large Floating Vertical Axis Wind Turbines Proceedings in Deep Sea Offshore R&D Conference Trondhjem(NO) 2011

20 DTU Wind Energy, Technical University of Denmark

DeepWind Results 1 st BaseLine 5 MW Rotor Design

Paulsen US , Vita L, Madsen HA, Hattel J, Ritchie E, Leban KM, Berthelsen PA, Carstensen S 1st DeepWind 5 MW baseline design Energy Procedia 00 (2011) 000–000


21 DTU Wind Energy, Technical University of Denmark



DeepWind

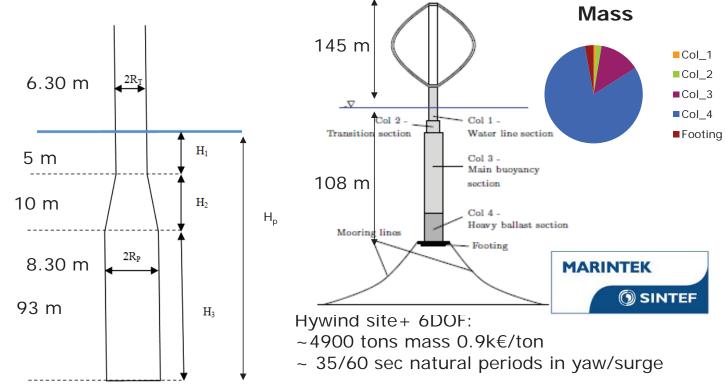
Results 1 st BaseLine 5 MW Design Blades

- blade weight 154 Ton
- blade length 187 m
- Blade chord 7.45 m, constant over length
- All GRP
- NACA 0018 profile

22 DTU Wind Energy, Technical University of Denmark

DeepWind

Results 1 st BaseLine 5 MW Design Generator


- 5 MW mechanical power at estimated 5.26 rpm and 9.1 MNm shaft torque renders a 400 pole 17.53 Hz design with a pole pitch of around 7.85cm
 - This corresponds to an air-gap diameter of around 10 m outer diameter of around 10.5 m, with a core length of around 1.4 m.
 - Mass of Copper, Iron and permanent magnet materials of around 90 metric tons
 - Design fits reasonable with the platform design

23 DTU Wind Energy, Technical University of Denmark

DeepWind Results 1 st BaseLine 5 MW Design Floater

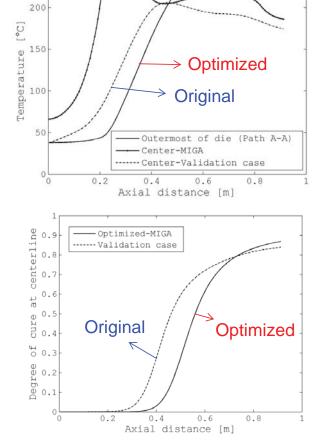
Detter Andreas Berthelsen, Ivar Fylling, Luca Vita, Uwe Schmidt Paulsen CONCEPTUAL DESIGN OF A FLOATING SUPPORT STRUCTURE AND MOORING SYSTEM FOR A VERTICAL AXIS WIND TURBINE Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering OMAE2012 June 10–15, 2012, Rio de Janeiro, Brazil

24 DTU Wind Energy, Technical University of Denmark

DeepWind Results LTT Windtunnel tests (July 2012)

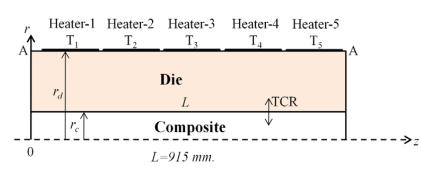
Analysis of advanced airfoils developed for VAWTs

25 DTU Wind Energy, Technical University of Denmark


DeepWind Results Modelling of Pultrusion Process

Studies already done:

Process optimization studies by using gradient based and/or genetic algorithms


-Optimal heater configuration

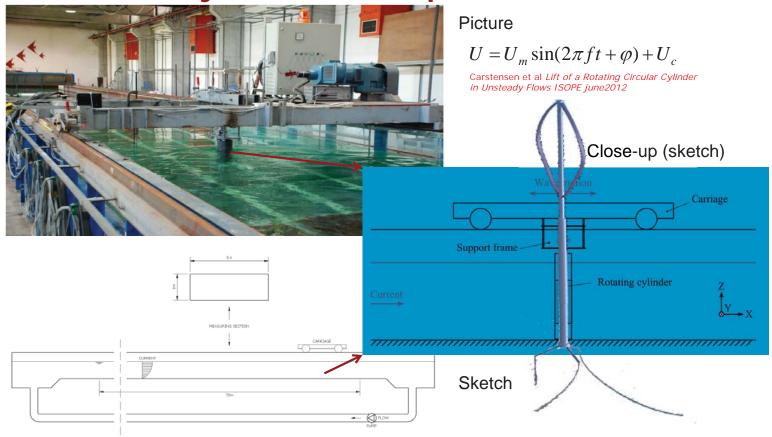
-Increase productivity i.e. increase pulling speed while satisfying the desired cure degree

Prescribed temperature at heater 2

250

Baran I, Tutum CC, Hattel JH. *App Compos Mat.* 2012. DOI: 10.1007/s10443-012-9278-3.

DTU Mekanik Institut for Mekanisk Teknologi



DeepWind **Results Physical Model Experiments** Picture Carstensen et al Lift of a Rotating Circular Cylinder in Unsteady Flows ISOPE *june2012* Close-up (sketch) Wave motion Carriage Support frame Rotating cylinder 7 Current ł Sketch () R.O

27 DTU Wind Energy, Technical University of Denmark

DeepWind Results Physical Model Experiments

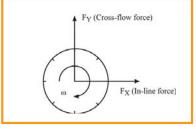
28 DIU wind Energy, Technical University of Denmark

DeepWind

 $F_X =$

Results Physical Model Experiments Forces (a) Morison formulation, waves and current:

- $F_{X} = \frac{1}{2}\rho C_{D}DU|U| + \rho C_{m}A\frac{dU}{dt} \qquad F_{Y} = 0$
- (b) Cylinder rotating in steady current:


$$F_X = \frac{1}{2}\rho C_D DU|U| \qquad \qquad F_Y = \frac{1}{2}\rho C_L DU|U|$$

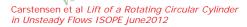
(c) Cylinder rotating in unsteady flow (I deal Fluid):

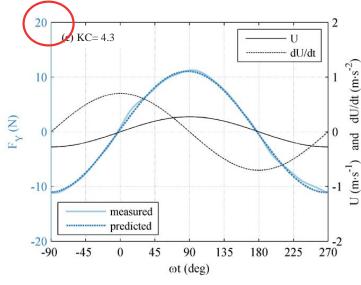
$$\rho C_m A \frac{dU}{dt} \qquad \qquad F_Y = \rho \Gamma U = \rho 2A \omega U = \rho C_\Gamma A \omega U$$

29 DTU Wind Energy, Technical University of Denmark

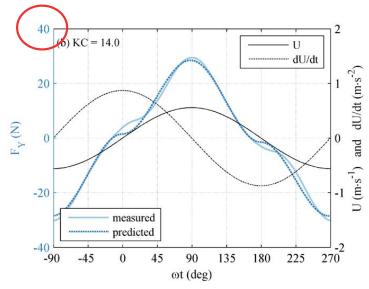
DeepWind-an Innovative Floating Offshore Wind Turbine concept

Sketch

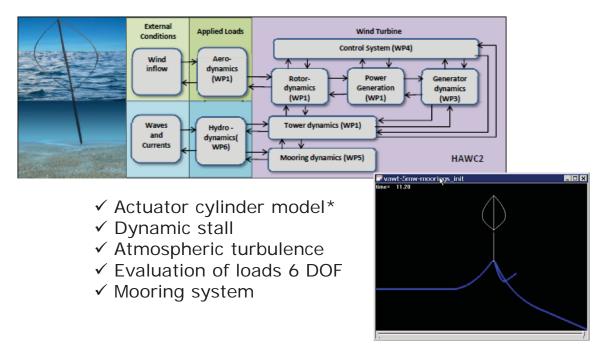

DeepWind Results Physical Model Experiments Oscillatory Lift Force *KC small:* (1 < KC < 8)*KC* = $\frac{2\pi a}{C} = \frac{1}{C}$


 $KC = \frac{2\pi a}{D} = \frac{U_m T}{D}$ $F_{Y} = \rho C_{\Gamma} A \omega U + \rho C_{mY} A \frac{dU}{dt} \qquad Re = \frac{aU_{m}}{v} = \frac{TU_{m}^{2}}{2\pi v}$ $\frac{H}{g} = C\sqrt{2ae^{-2\pi z/L}}$

 $T \cong C$

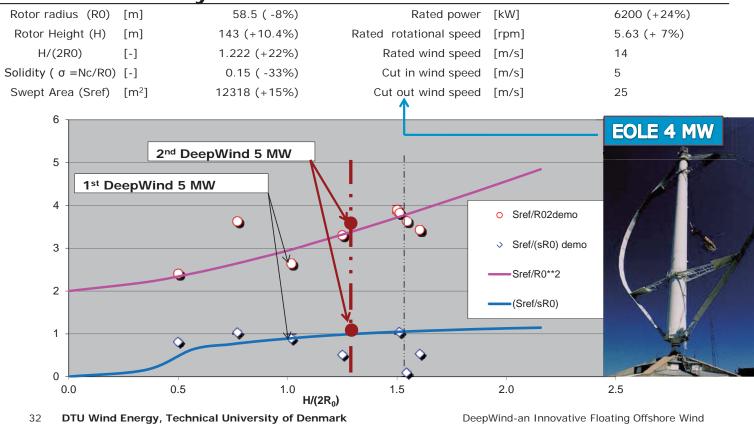

KC large: (12 < KC < 24)

$$F_{Y} = \frac{1}{2}\rho C_{L}DU|U| + \rho C_{mY}A\frac{dU}{dt}$$


DTU Wind Energy, Technical University of Denmark 30

DeepWind-an Innovative Floating Offshore Wind Turbine concept

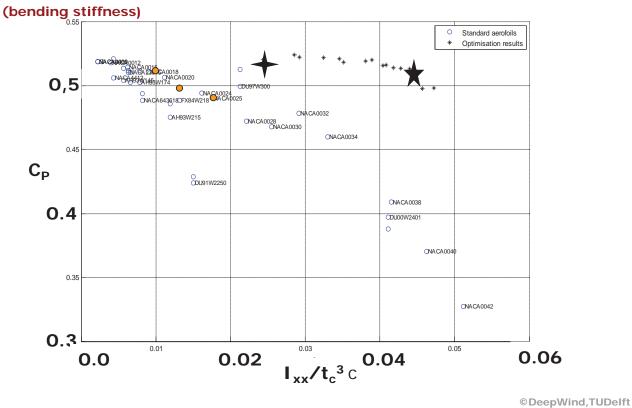
DeepWind Results 2nd Design Assumptions


*Madsen HA, Larsen T, Paulsen US Adoption of the aeroelastic code HAWC2 for vertical axis turbines using the actuator cylinder flow model 51st AIAA conference Dallas Texas(USA) Jan 2013

31 DTU Wind Energy, Technical University of Denmark

Turbine concept

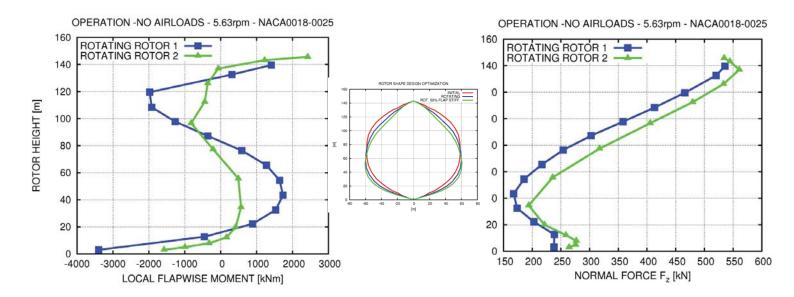
DeepWind Results 2nd iteration 5 MW Design Rotor Geometry Performance



DeepWind-an Innovative Floating Offshore Wind

DeepWind Results C_P vs dimensionless flapwise Inertia

DeepWind-an Innovative Floating Offshore Wind Turbine concept



33 DTU Wind Energy, Technical University of Denmark

DeepWind Results case-2+ 1iteration

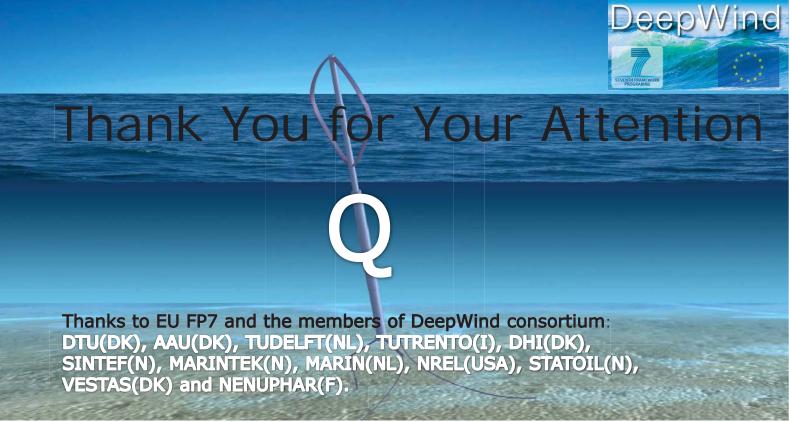
Uwe Schmidt Paulsen, Helge Aagård Madsen , Ismet Baran, Per Nielsen, Jesper Hattel *Design Optimization of a 5 MW Floating Offshore Vertical Axis Wind Turbine* presented at the Deep Sea Offshore Conference Trondheim (NO) 2013

34 DTU Wind Energy, Technical University of Denmark

DeepWind Contents

- DeepWind Concept
- DeepWind instruments and goals
- Results in the project
- Conclusion

35 DTU Wind Energy, Technical University of Denmark


DeepWind Conclusion

- ✓ Established a full design tool and verification code integrating VAWT concept
- ✓ Established a full model for blade pultrusion and preparation of advanced thick airfoils of laminar flow family with smaller CD₀ and good C_P
- ✓ Design tool for PMG subsea generators; 1st design of a 5 MW generator
- ✓ Design tool and verification tool for VAWT controls
- $\checkmark 1^{st}$ Floater for 5 MW design
- ✓ Verified Fluid dynamics for rotating cylinders
- ✓ Iteration from a 1st 5 MW floating concept to a 2nd iteration towards a light weight 5MW rotor with low bending moment
- Continuation of iterations for improved design and for Cost analysis
- 1st campaign of Demonstrator tests conducted
- Next tests to be carried out in Ocean lab

36 DTU Wind Energy, Technical University of Denmark

DeepWind Conclusion

37 DTU Wind Energy, Technical University of Denmark